Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean.
نویسندگان
چکیده
Growth and productivity of phytoplankton substantially change organic matter characteristics, which affect bacterial abundance, productivity, and community structure in aquatic ecosystems. We analyzed bacterial community structures and measured activities inside and outside phytoplankton blooms in the western North Pacific Ocean by using bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization (BIC-FISH). Roseobacter/Rhodobacter, SAR11, Betaproteobacteria, Alteromonas, SAR86, and Bacteroidetes responded differently to changes in organic matter supply. Roseobacter/Rhodobacter bacteria remained widespread, active, and proliferating despite large fluctuations in organic matter and chlorophyll a (Chl-a) concentrations. The relative contribution of Bacteroidetes to total bacterial production was consistently high. Furthermore, we documented the unexpectedly large contribution of Alteromonas to total bacterial production in the bloom. Bacterial abundance, productivity, and growth potential (the proportion of growing cells in a population) were significantly correlated with Chl-a and particulate organic carbon concentrations. Canonical correspondence analysis showed that organic matter supply was critical for determining bacterial community structures. The growth potential of each bacterial group as a function of Chl-a concentration showed a bell-shaped distribution, indicating an optimal organic matter concentration to promote growth. The growth of Alteromonas and Betaproteobacteria was especially strongly correlated with organic matter supply. These data elucidate the distinctive ecological role of major bacterial taxa in organic matter cycling during open ocean phytoplankton blooms.
منابع مشابه
Organic Contribution on Particles Formed on Pacific Ocean: From Phytoplankton Blooms to Climate
These SOAP project Pacific Ocean measurements reveal that phytoplankton blooms with sunny conditions make possible secondary organic contribution to ultrafine particles size and composition, and thus on cloud formation ability, and finally on climate. This is in agreement with other biologically active region observations about the presence of secondary organics even the exact fraction is also ...
متن کاملMulti-nutrient, multi-group model of present and future oceanic phytoplankton communities
Phytoplankton community composition profoundly affects patterns of nutrient cycling and the dynamics of marine food webs; therefore predicting present and future phytoplankton community structure is crucial to understand how ocean ecosystems respond to physical forcing and nutrient limitations. We develop a mechanistic model of phytoplankton communities that includes multiple taxonomic groups (...
متن کاملEffects of mannan oligosaccharide supplementation on growth, some immune responses and gut lactic acid bacteria of common carp (Cyprinus Carpio) fingerlings
This study was conducted to determine the effects of mannan oligosaccharide (MOS) on growth, some immune responses and gut lactic acid bacteria of common carp. Four experimental diets containing 0%, 0.05%, 0.10% and 0.20% MOS were prepared. Each diet was randomly allocated to triplicate groups of fish with initial average weight of approximately 14 g. After eight weeks, survival rate was high i...
متن کاملSeasonal Variability of Phytoplankton Blooms in the Coastal Waters along the East Coast of India
Bay of Bengal (BOB) is a semi enclosed tropical basin located in the north eastern part of the Indian Ocean with high influence of fresh water discharge from major rivers and rainfall. Bay of Bengal (BOB) is highly influenced by monsoons and represents a natural laboratory to study the effect of fresh water fluxes on the marine ecosystem. Bay of Bengal (BOB) is very low in productivity often wi...
متن کاملFunctional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean.
A diverse microbial assemblage in the ocean is responsible for nearly half of global primary production. It has been hypothesized and experimentally demonstrated that nutrient loading can stimulate blooms of large eukaryotic phytoplankton in oligotrophic systems. Although central to balancing biogeochemical models, knowledge of the metabolic traits that govern the dynamics of these bloom-formin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 77 12 شماره
صفحات -
تاریخ انتشار 2011